
Using Diversity to Harden Multithreaded Programs
Against Exploitation

David M. Tagatac and Salvatore J. Stolfo
Columbia University

New York, NY, USA
{dtagatac,sal}@cs.columbia.edu

Michalis Polychronakis
Stony Brook University
Stony Brook, NY, USA

mikepo@cs.stonybrook.edu

Abstract—Multithreaded programming is here to stay, and
concurrency bugs are the focus of a growing number of cyberat-
tacks. While most defensive efforts against such attacks seek to
identify bugs during debugging, an alternative method seeks to
make exploitation harder without the need to first identify the
bugs—or even the fact that there are any. Time randomization
introduces more diversity among instances of the same software.
In much the same way that ASLR-induced diversity in memory
locations thwarts attacks crafted for specific addresses, time
randomization-induced diversity in thread timing aims to thwart
concurrency attacks crafted for specific vulnerability windows.

We study three implementations of time randomization, all
using the injection of NOPs to alter program timing. Their ap-
plication to two real-world concurrency bugs results in a marked
increase in the cost to exploit those bugs. After demonstrating the
effectiveness of the method, especially when NOPs are injected
before library function calls following synchronization points,
methods for improving the efficiency of this defense against
concurrency attacks in future research are proposed.

Index Terms—time randomization, concurrency bugs, software
diversity.

I. INTRODUCTION

With the pervasiveness of multicore architectures, multi-
threading is an important—and often necessary—tool when
programming for performance. However, programming with
multiple threads is generally more difficult than programming
for serial execution. Each thread has the potential to contain
any bug of a serial program, and on top of that, the uncer-
tain interleaving of concurrent threads has the potential for
concurrency bugs (e.g., data races).

Partial taxonomies of concurrency bugs have been con-
structed [1], [2], and it has been demonstrated that attacks
on buggy multithreaded programs are a real concern [3].
Much of the effort in combating this threat has gone into
tools and systems which detect data races in order to aid
debugging [4], [5], [6], [7], [8]. An alternative approach is to
guide multithreaded programs into memoized synchronization
schedules [9]. This approach does not dwell on race detection,
but rather on removing the nondeterminism from the portions
of multithreaded programs where races are most likely. How-
ever, schedule memoization in its most automated form is
still susceptible to attack whenever the attacker can trigger
a different schedule by changing the input.

We address the threat of concurrency attacks from yet
another angle: automated software diversity. Software homo-

geneity is dangerous in that it provides economies of scale
to attackers [10]. The relatively high cost of constructing
an exploit for one bug is amortized by the opportunity to
reuse that same exploit on every identical instance of the
software. As a result, automated software diversity is an active
area of research for software in general [11]. Concurrency
vulnerabilities subject a homogenous world of software to the
same dangers for the same reasons.

Focusing on the applicability of diversity-based defenses
to concurrency attacks, what we call “time randomization”
is the randomization of synchronization schedules and thread
interleavings, as well as the relative timing between and among
threads. The majority of diversification strategies systematized
by Larsen et al. [11], like ASLR and instruction reordering,
focus on mitigating attacks which depend on the predictability
of absolute and/or relative addresses in memory (e.g., code
reuse attacks or stack smashing attacks). Time randomization
instead focuses on mitigating attacks which depend on the
predictability of relative thread timing. This approach to
defenses against concurrency attacks has the advantage that
it does not require knowledge of the bug. In other words, time
randomization can be applied independent of bug detection
and fixing. This highlights another point—that time random-
ization does not exclude other defenses against concurrency
attacks; they can be applied together in concert.

This work makes the following contributions:
• Time randomization, a novel approach to concurrency

attack defense involving automated software diversity.
This work analyzes three implementations which can
be considered automated software diversity transforma-
tions via functionally-invariant code insertion. All three
transformations involve the insertion of NOPs into mul-
tithreaded programs, one of which is a mostly unfocused
randomization, and two of which specifically target syn-
chronization mechanisms as a heuristic for time random-
ization. (§ II)

• Experimental evaluation of time randomization on two
real-world bugs, with encouraging results. In the first
bug, the most effective transformation resulted in exploit
success rates of less than 0.5% for all experiments beyond
a certain threshold of NOPs inserted. In the second bug,
the most effective transformation resulted in nearly 85%
of exploit attempts taking significantly longer than the

mailto:dtagatac@cs.columbia.edu
mailto:sal@cs.columbia.edu
mailto:mikepo@cs.stonybrook.edu


baseline exploit time (measured without time randomiza-
tion). (§ III and § IV)

• A proposal for future work to build on these results,
including system-level time randomization for achieving
the same benefits with more tolerable overhead. (§ V)

II. TIME RANDOMIZATION

A. Threat Model

The type of attack that time randomization seeks to thwart
has the following properties:

• The attack targets a concurrency bug.
• The attacker can gain knowledge about the relative timing

between two or more threads relevant to the bug.
• The attacker leverages this knowledge to craft the attack.

Note that there are many ways to gain knowledge about rela-
tive thread timing, including results from fuzzing experiments.
In the case that the fuzzing is done on a binary, it may not
even be obvious how many threads are involved. Nevertheless,
positive fuzzing results can be considered knowledge about
relative thread timing which can then be used to craft an attack.

As an example, consider the following scenario: A remote
attacker is communicating with some server software that has
a concurrency bug. They have devised a way to exploit the
bug, which includes a method for inducing a buggy thread
interleaving. For concreteness, let’s assume that the bug is
exposed when a save operation is attempted by one thread
during the critical section of another save operation in another
thread (e.g., after some checking has been done, but before
the results have been used, sometimes referred to as a time
of check to time of use attack). If the server immediately
spawns threads to execute save operations in response to client
requests, the attacker’s work consists of identifying the proper
delay between two save threads such that the critical sections
intersect. The critical sections in this context are sometimes
referred to as a vulnerability window [3].

If the server software is available to the attacker, they can
simply study it on a similar system (which they control) to
determine the appropriate delay required to expose the bug.
Armed with this knowledge, they stand a good chance of
exploiting the bug on the target system by sending requests
with the same delay.

B. Implementation
Time randomization, the randomization of synchronization

schedules and thread interleavings, as well as the relative
timing between and among threads, aims to make this type
of attack much harder. By making the relative timing between
threads less predictable, the cost of carrying out the attack
above is dramatically increased.

Of the various software diversity transformations which
have been studied [11], the ones which are most applicable
to time randomization are those which

• add delays to a thread or threads, and those which
• apply reordering to affect thread interleaving.

The first category is almost always possible, as adding delays
rarely breaks programs. However, an obvious drawback to

this approach is loss of performance, and this drawback must
be weighed against the benefits of the transformation. In
the second case, the “something” reordered can be at any
granularity (instruction level, function level, program level,
etc.) so long as thread interleaving is affected. These types
of transformations are less likely to have performance costs,
but they are more likely to break the correctness of programs.
This work studies three transformations in the first category.

The three transformations for introducing automated diver-
sity explored in the context of concurrency attacks in this work
consist of interposing external library calls [12] made by the
software to be protected each with random numbers of inline
assembly NOP instructions. This was accomplished in two
steps: first by specifying the library functions to be interposed;
and second by interposing those functions with NOP loops.

1) Choosing Which Library Functions to Interpose: The
way that the library functions are chosen for interposition
distinguishes among the three transformations studied. The
first transformation chooses all external library function calls
indiscriminately, while the other two use synchronization
mechanisms to indicate locations where delays may have the
greatest effect on relative thread timing. In all transformations,
ltrace [13] is run on the unmodified program to be protected
while it is being subjected to an exploit attempt. Using the log
from that ltrace run,

T1 the first transformation chooses every external library
function call for interposition,

T2 the second transformation chooses every external
library function call immediately preceding a syn-
chronization mechanism, and

T3 the third transformation chooses every external li-
brary function call immediately following a synchro-
nization mechanism.

(Hereafter, these transformations are referred to as T1, T2, and
T3.) Functions were only excluded in the rare cases when they
take a variable argument list, or interposing the function inter-
feres with the interposition method itself (e.g., sigsetjmp).
Both cases are unsuitable for the interposition method used in
this work. As all of the experiments were conducted on Linux,
“synchronization mechanisms” were generally identified as
pthread function calls, except for the case of Libvirt which
redefines its own synchronization mechanisms.

2) NOP Loop Injection: Once the functions were chosen
for interposition, NOP loops were interposed as described in
the tutorial cited above [12]. First a max delay was specified
(per interposition). Then, for each of the external library
functions chosen for interposition, a random integer between
zero and the max delay was selected. Finally, that number
was used as the loop limit on a loop of a single assembly
NOP interposed before that external library function. The
interpositions of the NOP loops were compiled into a dynamic
library file, and that file was specified to be preloaded with
the LD PRELOAD environment variable.

More specifically, a C file was generated (including any nec-
essary headers) which redefined each of the library functions



chosen for interposition as described in § II-B1. Each of these
redefinitions consisted of exactly the following pieces:

1) declaration of a function pointer of the same type as the
function being redefined (to be used to call the original
library function),

2) a for loop with a loop limit chosen as described
above, and a body consisting of the single statement
asm("nop;");,

3) assignment of the original library function (via dlsym)
to the function pointer declared in 1., and

4) a call to the original library function, returning the return
value.

This file was then compiled as a dynamic library to be
preloaded at runtime before each experiment.

III. EXPERIMENTAL DESIGN

To test both the efficacy and the performance of time
randomization, we applied time randomization to two real
concurrency bugs.

A. Libsafe CVE-2005-1125

Libsafe [14] is a library which protects processes against
the exploitation of buffer overflow vulnerabilities in process
stacks, as well as format string vulnerabilities. It does this by
intercepting all calls to C standard library functions known
to be vulnerable, and then running “safe” versions of those
functions which issue warnings about exploit attempts before
exiting without allowing the exploits to succeed.

A static global variable ‘dying’ is used in Libsafe to indicate
when an unsafe action has already been detected, and Libsafe
is issuing warnings and exiting. In this case, Libsafe stops
checking for new exploit attempts. However, this variable is
not protected by any synchronization mechanisms, so in the
case of a multithreaded program, the following sequence of
events is possible:

1) Thread A attempts an exploit.
2) The exploit is caught by Libsafe, the ‘dying’ flag is set,

and Libsafe begins the warning and exit procedure.
3) Thread B is scheduled, and attempts another exploit

before Libsafe has exited thread A.
4) Because the ‘dying’ flag is set, thread B’s exploit is not

caught by Libsafe, and it succeeds.
The proof-of-concept exploit [15] often realizes the above
sequence of events, effectively bypassing Libsafe.

Time randomization was applied to Libsafe as described in
§ II-B. The time required to make a (legal) strcpy function
call (using Libsafe and averaged over 10,000,000 strcpy
calls), and the proof of concept exploit success rate were mea-
sured for several randomizations for each max delay, where
max delay was varied from 0 to 50,000. Recall that the max
delay is used as the upper bound on the range from which the
NOP loop length for each function interposition is randomly
chosen, as described in § II-B. T2 and T3 were special cases
for this bug in that only one external library function was
identified as immediately preceding a synchronization mecha-
nism and only one external library function was identified as

immediately following a synchronization mechanism. In these
cases, we were able to exactly characterize the effects of NOP
injection as a function of the number of NOPs injected into
that function.

B. Libvirt CVE-2014-1447

Libvirt [16] is a toolkit for interacting with virtual machines
and hypervisors. This toolkit consists, in part, of a daemon
‘libvirtd’ which listens for and responds to virtual machine
management requests (e.g., to connect to a remote host, or
shutdown a VM).

Prior to version 1.2.1, the Libvirt daemon suffered from
concurrency bug CVE-2014-1447 which allows an unau-
thenticated client to crash the daemon with seemingly in-
nocuous requests to connect to a host. After receiving a
request from a client to open a connection, the daemon
spawns a thread to open and maintain that connection. The
spawned thread will eventually dereference a pointer called
client->keepalive as part of opening the connec-
tion. However, during this vulnerability window, the client
may close the connection, which the daemon will han-
dle in the main thread by (among other things) setting
client->keepalive to NULL. Then when the spawned
thread dereferences this pointer, the daemon crashes. [17]

The Libvirt developers’ proof of concept makes two changes
to Libvirt in order to reliably reproduce this bug. First, the
client is modified to exit as soon as it has requested a
connection. Second, the daemon is modified to sleep in threads
spawned to open new connections, before dereferencing the
client->keepalive pointer. The first modification is
within an attacker’s ability, in our threat model. However, the
second modification requires control of the daemon, which we
assume the attacker does not yet have. An alternate exploit
requiring only the first modification was applied to Libvirt
0.9.8. In this alternate exploit, the client opens (and closes) as
many connections as it can until the daemon crashes. Without
modification to the daemon, this alternate exploit reliably
reproduced the bug and crashed the daemon.

Time randomization was applied to the Libvirt daemon as
described in § II-B. The time required to open and close a
connection properly (with the unmodified client averaged over
10,000 sequential connections) was measured, and the time
required for the alternate exploit described above to crash the
daemon was measured five times for a single randomization
for each max delay. For T1, the max delay was varied from 0
to 1,000. For T2 and T3, the max delay was varied from
0 to 1,000,000. All exploit attempts were interrupted and
considered failed attempts after ten minutes if they did not
succeed before then.

IV. RESULTS

We evaluated T1-T3 on Libsafe CVE-2005-1125 and on
Libvirt CVE-2014-1447. For each evaluation, exploit cost or
exploit success rate was evaluated for each of many applica-
tions of the transformation under study. The exploit cost or
success rate was then compared to either the microbenchmark



Fig. 1: Exploit success rate as a function of the microbenchmark after
applying T1 to Libsafe with concurrency bug CVE-2005-1125. There
is a clear inverse correlation between microbenchmark overhead and
exploit success rate.

overhead, or the number of NOPs injected, as appropriate for
each experiment. Libsafe experiments were run on a dedicated
dual core 3.4GHz Pentium D running Debian. Libvirt exper-
iments testing T1 were run on a 2.7GHz dual-socket quad-
core Intel Xeon with 16 hyper-threading cores running Debian.
Libvirt experiments testing T2 and T3 were run on a 2.8GHz
dual-socket hex-core Intel Xeon with 24 hyper-threading cores
running Ubuntu. In all figures, the horizontal red line indicates
the average measurement for the unmodified bug (without time
randomization). The results vary somewhat widely with the
bug analyzed and the automated diversity transformation used.

Applying transformation 1 to Libsafe resulted in a dramatic
decrease in exploit success rate with increasing microbench-
mark overhead (Fig. 1). Between 1x and 12x overhead, no ran-
domizations resulted in less than a 5% success rate. Between
20x and 25x overhead, 27.5% of randomizations resulted in
less than a 5% exploit success rate. Between 40x and 45x
overhead, 61.5% of randomizations resulted in less than a
5% exploit success rate. Beyond 1,040x overhead, 100% of
randomizations resulted in less than a 5% exploit success rate.

Applying T2 to Libsafe had no noticeable effect on exploit
success rate (Fig. 2) or microbenchmark overhead.

Applying T3 to Libsafe had a very marked effect on exploit
success rate (Fig. 3). In particular, the rate remains high
for low numbers of NOPs. Then, for inserted NOP loops of
lengths greater than 200,000, the rate begins to drop. For NOP
loops of lengths between 250,000 and 350,000, exploit success
rate fluctuates between 35% and 65%. Finally, for NOP loops
of lengths greater than 350,000, exploit rates drop even further,
and beyond loop-lengths of 390,000 NOPs, all interpositions
resulted in exploit rates less than 0.5%.

T1 affected the exploit cost for the Libvirt bug. However,
the increase in time required for exploitation is approximately
proportional to the increase in microbenchmark measurements.
The exploit cost increase may therefore be attributed to an
overall slowing down of the Libvirt daemon (Fig. 4).

Fig. 2: Exploit success rate as a function of the microbenchmark
after applying diversity T2 to Libsafe with concurrency bug CVE-
2005-1125. This transformation does not appear to have an effect on
exploit success rate for this bug.

Fig. 3: Exploit success rate as a function of the number of NOPs
injected after applying T3 to Libsafe with concurrency bug CVE-
2005-1125. A very clear inverse correlation between NOP loop length
and exploit success rate is shown.

Fig. 4: Exploit cost (in time) as a function of the microbenchmark
after applying T1 to Libvirt with concurrency bug CVE-2014-1447.
The exploit cost increases as a result of applying this transformation,
but the increase is approximately proportional to the overall perfor-
mance loss (x-axis).



Fig. 5: Exploit cost (in time) as a function of the microbenchmark
after applying T2 to Libvirt with concurrency bug CVE-2014-1447.
This transformation does not appear to have an effect on exploit
success rate for this bug.

Applying T2 to Libvirt did not seem to have much of an ef-
fect on exploit cost. The characteristic of most exploit attempts
succeeding quickly, and a few taking much longer appears to
be consistent throughout the range of microbenchmark values
recorded (Fig. 5).

T3 applied to Libvirt, as in the case of Libsafe, had a signif-
icant effect on exploit cost. For microbenchmark connection
times of less than 10 milliseconds, less than 4% of exploit
attempts took longer than the baseline exploit time of 1.11
seconds, where the baseline exploit time was obtained for a
Libvirt daemon without any time randomization. By contrast,
for microbenchmark times of greater than 10 milliseconds,
nearly 85% of exploit attempts took longer than the baseline
exploit time. Looking at the graph (Fig. 6), we can see a
similar shape to the one obtained when applying T2 to Libvirt
- the bifurcation between exploit attempts that succeed quickly
within seconds, and those which take hundreds of seconds to
succeed. However, after applying automated T3, a significantly
greater proportion of exploit attempts fell into the second
branch of that bifurcation, taking hundreds of seconds to
succeed, or failing to succeed within ten minutes (and being
categorized as failed attempts).

V. DISCUSSION & FUTURE DIRECTIONS

It is clear from these results that, at the very least, time
randomization increases the exploitation cost for some con-
currency bugs. T3 appears to be more effective than the other
two transformations. One possible explanation for this is that
T3 adds delays shortly after synchronization mechanisms. If
these delays fall in a critical section, or before one, the chances
of scheduler preemption affecting the thread interleaving about
the critical section increase. This is not to say that the other
transformations cannot also have this effect, but in the case of
T2, the proximity to a critical section may not be as high, and
in the case of T1, the delays are less concentrated about the
synchronization mechanisms.

Fig. 6: Exploit cost (in time) as a function of the microbenchmark
after applying diversity T3 to Libvirt with concurrency bug CVE-
2014-1447. Beyond microbenchmark measurements of 10 millisec-
onds, most of exploit costs observed were much greater than the
baseline; often the exploit attempts were stopped artificially early
and labeled “failed exploits.” This transformation thus increases the
average exploit cost with increasing microbenchmark overhead.

Given the results presented here, the major argument against
employing time randomization universally becomes perfor-
mance overhead. While overheads on effective randomizations
were unacceptably high using the NOP injection implementa-
tions tested here (at least 12x for T1 and at least 5x for T3),
it is not clear that significant overhead is necessary for time
randomization in general. Part of the effect of time random-
ization via NOP injection is to modify thread interleavings
by signaling with NOPs to the scheduler that another thread
can be scheduled. The randomization between and among
threads achieved here with NOP injection could conceivably be
achieved directly in the scheduler via random synchronization
schedules. By modifying the scheduler directly, it may be
possible to obtain the same benefits shown here with minimal
overhead. In this vein, it is also worth evaluating established
and novel scheduling algorithms which include elements of
randomness (e.g. genetic scheduling algorithms [18]).

Alternatively, a more complicated heuristic could be applied
to the NOP insertion implementations investigated here. More
specifically, for each randomization, measurements could be
taken of the extent to which relative thread timing has been
randomized, and of some performance metric. These measure-
ments could be used to decide whether to keep a specific
randomization or generate a new one, as well as to calibrate
randomization parameters like max delay in this work.

VI. RELATED WORK

Automated software diversity as a defense strategy has been
systematized by Larsen et al. [11]. That work proposes a
taxonomy of cyberattacks and a taxonomy of defenses against
those classes of attacks, and surveys many of the studied and
unstudied diversification techniques. To our knowledge, ours
is the first work to investigate automated software diversity
specifically as it pertains to concurrency attacks.



NOP injection, also known as “garbage code insertion,” has
been investigated as a defense strategy many times. Cohen [19]
and Forrest et al. [20] proposed garbage code insertion as a
method for diversifying operating system source code, aiming
to drive up the required complexity of attacks. Onarlioglu et
al. investigated NOP injection as a means to create gadget-
less binaries [21]. Their approach is deterministic and a
distinct defense from automated diversity. Jackson et al. used
GCC or LLVM to insert NOPs into register transfer language
or machine code, respectively, at compile time [22]. This
diversifying transformation inserts a NOP—with some finite
probability–before each instruction, in order to break return-
oriented programming and code reuse attacks. Homescu et
al. went on to measure the performance and efficacy of
traditional [23] and JIT [24] compiler-based automated di-
versity. While the literature for NOP injection as a defense
is voluminous, we again believe our work to be the first to
investigate it with respect to concurrency attacks. Moreover,
where compiler-based NOP insertion requires recompiling en-
tire programs, our approach is more lightweight and amenable
to more frequent randomization (e.g., at every reboot).

Occasionally, randomized scheduling has been used to ex-
pose concurrency bugs. CalFuzzer [25] is a testing frame-
work that allows for pausing of Java programs at critical
“breakpoints,” and then testing the various possible transitions
from those breakpoints for concurrency bugs. Burckhardt et
al. showed that random insertion of priority change points
in a priority-based scheduler has a probability of exposing
concurrency bugs that is reasonably high when it can be
assumed that the number of scheduling constraints required to
reproduce the bug is low [26]. CTrigger [27] inserts artificial
synchronizations at critical execution points in an attempt to
trigger low-probability thread interleavings. While these works
appear at first glance to contradict time randomization as a
defense, this is not the case. Time randomization does not
propose to fix existing concurrency bugs, but rather to raise
the cost to an attacker attempting to trigger, and then exploit a
bug using timing information that they have gained about the
bug. Randomization may at times uncover concurrency bugs
that don’t usually manifest under normal execution, while also
hardening the program against targeted concurrency attacks.

VII. CONCLUSION

We have presented time randomization, a subset of auto-
mated software diversity which randomizes the timing between
and among threads, with the goal of thwarting concurrency
attacks which benefit from predictability in that timing. Our
experiments show that at least one of the time randomiza-
tion transformations tested have a significant effect on the
cost to exploit two real-world concurrency bugs. We believe
that transformations with lesser performance costs are worth
studying as a defense against concurrency attacks.

VIII. ACKNOWLEDGMENT

This work was supported in part by IARPA STONESOUP
contract FA8650-10-C-7024.

REFERENCES

[1] E. Farchi, Y. Nir, and S. Ur, “Concurrent bug patterns and how to test
them,” Proceedings International Parallel and Distributed Processing
Symposium, vol. 00, no. C, 2003.

[2] S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from mistakes - A
Comprehensive Study on Real World Concurrency Bug Characteristics,”
in ASPLOS XIII. New York, New York, USA: ACM Press, 2008, p.
329.

[3] J. Yang, A. Cui, S. J. Stolfo, and S. Sethumadhavan, “Concurrency
Attacks,” in HotPar’12. USENIX Association, Jun. 2012, p. 15.

[4] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson,
“Eraser: a dynamic data race detector for multithreaded programs,” ACM
Transactions on Computer Systems, vol. 15, no. 4, pp. 391–411, Nov.
1997.

[5] C. Flanagan and S. Freund, “Atomizer: a dynamic atomicity checker
for multithreaded programs (summary),” 18th International Parallel and
Distributed Processing Symposium, 2004. Proceedings., pp. 269–271,
2004.

[6] O. Laadan, C.-C. Tsai, N. Viennot, C. Blinn, P. S. Du, J. Yang, and
J. Nieh, “Finding Concurrency Errors in Sequential CodeOS-level, In-
vivo Model Checking of Process Races,” in HotOS XIII. USENIX
Association, 2011, pp. 1–5.

[7] P. Pratikakis, J. S. Foster, and M. Hicks, “LOCKSMITH: Practical Static
Race Detection for C,” ACM Transactions on Programming Languages
and Systems, vol. 33, no. 1, pp. 1–55, Jan. 2011.

[8] B. Kasikci, C. Zamfir, and G. Candea, “RaceMob: Crowdsourced Data
Race Detection,” in SOSP ’13. New York, New York, USA: ACM
Press, 2013, pp. 406–422.

[9] H. Cui, J. Wu, C.-C. Tsai, and J. Yang, “Stable Deterministic Mul-
tithreading through Schedule Memoization,” in OSDI’10. USENIX
Association, Oct. 2010, pp. 1–13.

[10] D. Geer, R. Bace, P. Gutmann, P. Metzger, C. Pfleeger, J. Quarterman,
and B. Schneier, “Cyber insecurity: The cost of monopoly,” CCIA,
vol. 24, 2003.

[11] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz, “SoK : Automated
Software Diversity,” IEEE S&P, 2014.

[12] J. Conrod, “Tutorial: Function Interposition in Linux,” http://jayconrod.
com/posts/23/tutorial-function-interposition-in-linux, Jun. 2009, ac-
cessed: 2014-10-04.

[13] J. Cespedes, “Ltrace home page,” http://www.ltrace.org/.
[14] T. Tsai, T. Tsai, N. Singh, N. Singh, A. Labs, A. Labs, M. Hill,

and M. Hill, “Libsafe 2.0: Detection of Format String Vulnerability
Exploits,” pp. 1–5, 2001.

[15] “Overflow.pl: Libsafe - Safety Check Bypass Vulnerability,” http://www.
securityfocus.com/archive/1/395999, Apr. 2005, accessed 2014-10-22.

[16] Red Hat, “libvirt: The Virtualization API,” http://libvirt.org, accessed:
2015-01-24.

[17] “Red Hat Bugzilla — Bug 1047577,” https://bugzilla.redhat.com/show
bug.cgi?id=1047577, accessed: 2015-01-24.

[18] M. Qiu, M. Zhong, J. Li, K. Gai, and Z. Zong, “Phase-Change
Memory Optimization for Green Cloud with Genetic Algorithm,” IEEE
Transactions on Computers, vol. 64, no. 12, pp. 1–1, 2015.

[19] F. B. Cohen, “Operating system protection through program evolution,”
Computers & Security, vol. 12, pp. 565–584, 1993.

[20] S. Forrest, a. Somayaji, and D. Ackley, “Building diverse computer
systems,” HotOS VI, 1997.

[21] K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and E. Kirda, “G-Free,”
ACSAC ’10, p. 49, 2010.

[22] T. Jackson, A. Homescu, S. Crane, P. Larsen, S. Brunthaler, and
M. Franz, “Diversifying the Software Stack Using Randomized NOP
Insertion,” in Moving Target Defense II: Application of Game Theory
and Adversarial Modeling, 2013, pp. 151–173.

[23] A. Homescu, S. Neisius, P. Larsen, S. Brunthaler, and M. Franz, “Profile-
guided automated software diversity,” CGO ’13, 2013.

[24] A. Homescu, S. Brunthaler, and M. Franz, “librando : Transparent
Code Randomization for Just-in-Time Compilers Categories and Subject
Descriptors,” CCS’13, pp. 993–1003, 2013.

[25] P. Joshi, M. Naik, C. S. Park, and K. Sen, “CalFuzzer: An extensible
active testing framework for concurrent programs,” in Lecture Notes in
Computer Science, vol. 5643 LNCS, 2009, pp. 675–681.

[26] S. Burckhardt, P. Kothari, M. Musuvathi, and S. Nagarakatte, “A
randomized scheduler with probabilistic guarantees of finding bugs,”
ACM SIGPLAN Notices, vol. 45, no. 3, p. 167, 2010.

[27] S. Park, S. Lu, and Y. Zhou, “CTrigger,” p. 25, 2009.

http://jayconrod.com/posts/23/tutorial-function-interposition-in-linux
http://jayconrod.com/posts/23/tutorial-function-interposition-in-linux
http://www.ltrace.org/
http://www.securityfocus.com/archive/1/395999
http://www.securityfocus.com/archive/1/395999
http://libvirt.org
https://bugzilla.redhat.com/show_bug.cgi?id=1047577
https://bugzilla.redhat.com/show_bug.cgi?id=1047577

	Introduction
	Time Randomization
	Threat Model
	Implementation
	Choosing Which Library Functions to Interpose
	NOP Loop Injection


	Experimental Design
	Libsafe CVE-2005-1125
	Libvirt CVE-2014-1447

	Results
	Discussion & Future Directions
	Related Work
	Conclusion
	Acknowledgment
	References

